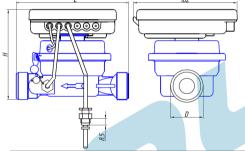
11	СВЕЛЕНИЯ О ПРИЕМКЕ	

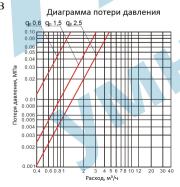
Теплосчетчик «Пульса	р» модификации Т					
заводской №,	соответствует требованиям	технических	условий ТУ	4213-041-44883489-201	6 и признан	годным к
эксплуатации.						

ОТК


Дата выпуска

12 СВЕДЕНИЯ О ПОВЕРКЕ

Теплосчетчик «Пульсар» модификации Т прошёл поверку в соответствии с таблицей:


Дата поверки	Наименование поверки	Отметка о поверке	Фамилия, инициалы, подпись поверителя	Клеймо поверительного органа	Дата очередной поверки
	Первичная до ввода в эксплуатацию	Поверка выполнена			

Приложение А ГАБАРИТНЫЙ ЧЕРТЕЖ И УСТАНОВОЧНЫЕ РАЗМЕРЫ

	-					
Размер		Номиналь	ный ди	аметр	15	20
Монтажная для	ина L, м	M			110	130
Высота Н, мм н	не более	;			90	100
Присоединител	тьная ре	зьба D			G3/4	G1
Присоединител	ьная рез	ьба термопреоб	разоват	еля	M10	x1

Приложение В

Приложение Б

ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ ПОЛКЛЮЧЕНИЙ

1) Исполнение с интерфейсом RS485:

Белый	 минус питания
Коричневый	– плюс питания
Желтый	– RS485 A
Зеленый	– RS485 B

2) <u>Исполнение с импульсными входами и интерфейсом RS485</u>:

 Серый (Черный)
 — плюс вход 1

 Розовый (Оранжевый)
 — плюс вход 2

 Синий
 — плюс вход 3

 Красный
 — плюс вход 4

 Белый
 — минус питания

 Коричневый
 — плюс питания

 Желтый
 — RS485 A

 Зеленый
 — RS485 B

3) Исполнение с интерфейсом М-Виз:

 $egin{array}{lll} & - M-Bus \\ Kоричневый & - M-Bus \end{array}$

4) <u>Исполнение с импульсными входами и интерфейсом M-Bus</u>:

 Серый (Черный)
 – плюс вход 1

 Розовый (Оранжевый)
 – плюс вход 2

 Синий
 – плюс вход 3

 Красный
 – плюс вход 4

 Белый
 – минуе входов

 Желтый
 – M-Bus

 Зеленый
 – M-Bus

5) Исполнение с импульсным выходом:

 Коричневый
 - плюс

 Белый
 - минус

ООО НПП «ТЕПЛОВОДОХРАН»

Теплосчетчики «Пульсар»

(модификация Т, мех<mark>анические)</mark>

Руководство по эксплуатации (паспорт)

ЮТЛИ.408843.000 РЭ (ред.1.9) Государственный реестр № 65782-16

Настоящее руководство по эксплуатации представляет собой эксплуатационный документ, объединённый с паспортом.

1 НАЗНАЧЕНИЕ

Следано в России

Теплосчетчики «Пульсар» Т (далее – теплосчетчики) предназначены для работы в закрытых системах отопления либо холодоснабжения (в качестве счетчика холода). Теплосчетчики могут использоваться для измерения тепла в тупиковой системе горячего водоснабжения, как счетчики горячей воды, определяющие объем воды, температура которой выше заданного значения.

Теплосчетчик включает в себя преобразователь расхода, вычислитель и пару платиновых термопреобразователей сопротивления.

Принцип работы теплосчетчика состоит в измерении объема и температуры теплоносителя в подающем и обратном трубопроводах и последующем определении тепловой энергии, путем обработки результатов измерений вычислителем.

Теплосчетчик измеряет, вычисляет и индицирует на ЖКИ следующие параметры:

- тепловую энергию (энергию холода), (Гкал);
- объем теплоносителя, (м³);
- температуру теплоносителя в подающем и обратном трубопроводах, (°C);
- разность температур в подающем и обратном трубопроводах, (°C);
- мгновенный расход теплоносителя, (м³/ч);
- мгновенную тепловую мощность, (Гкал/ч);
- дату и время;
- объем воды, измеренный счетчиками с импульсным выходом, подключенными к дополнительным счетным входам (м³):
- сетевой адрес:
- коды ошибок.

Теплосчетчик имеет энергонезависимую память, в которой регистрируются значения тепловой энергии и параметры теплопотребления (средние температуры за интервал времени, объем теплоносителя за интервал времени). Глубина архива 60 месяцев, 184 суток и 1488 часов. По протоколу М-Виѕ возможно считывание месячного архива глубиной 24 записи. В энергонезависимой памяти сохраняется журнал событий, содержащий информацию об ошибках, возникающих в процессе работы, и изменении настроечных параметров.

Расчет тепла по уравнению теплопередачи (2) ГОСТ Р ЕН 1434-1-2011.

Теплосчётчик «Пульсар» Т устанавливается в соответствии с типовым проектным решением, приведённым http://teplovodokhran.ru/support.

Теплосчетчики поставляются как без интерфейсов, так и с интерфейсами: RS485, M-Bus, импульсный выход, радиоканал (IoT, LoRa). Выбор интерфейса осуществляется при заказе прибора.

Теплосчетчики соответствуют требованиям ТР ТС 020/2011. Декларация о соответствии: EAЭС N RU Д-RU.PA01.B.34306/21 от 06.09.21г, принята ООО НПП «ТЕПЛОВОДОХРАН» (390027, г. Рязань, ул. Новая, д. 51В, литера Ж, неж.пом. Н2).

2 ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

облица 1

Наименование параметра		Значение параметра				
Диаметр условного прохода, Ду, мм		15			20	
Минимальный объемный расход, q _i , м ³ /ч	0,012	0,02	0,03	0,03	0,05	
Максимальный объемный расход*, q _p , м ³ /ч	0,6	1,0	1,5	1,5	2,5	
Предельный объемный расход, q _s , м ³ /ч	1,2	2,0	3,0	3,0	5,0	
Порог чувствительности, м ³ /ч	0,004	0,006	0,008	0,006	0,015	
Масса, г, не более		700		90	00	
***	4 5 0 0 0 0 4 4 34 0 0 / 0					

*Gmax - в соответствии с Приказом Минстроя России от 17.03.2014 № 99/ «Об утверждении Методики осуществления коммерческого учета тепловой энергии, теплоносителя».

Таблица 2

Наименование параметра	Значение параметра	
Пределы допускаемой относительной погрешности измерений количества энергии (тепловой мощности), %,:	$\pm(3+4\cdot\Delta t_{min}/\Delta t+0.02\cdot q_p/q)$	
Пределы допускаемой относительной погрешности измерений объемного расхода (объема) теплоносителя, %,:	$\pm (2+0,02\cdot q_p/q)$, но не более ± 5	
Диапазон измерений температуры, °C	от 1 до 105	
Пределы допускаемой абсолютной погрешности измерений температуры, °С	±(0,6+0,004·t)	
Диапазон измерений разности температур, Δt , °C	от 3 до 104	
Пределы допускаемой относительной погрешности комплекта датчиков температуры, %	$\pm (0.5+3 \cdot \Delta t_{min}/\Delta t)$	
Пределы допускаемой относительной погрешности вычислителя, %	$\pm (0.5 + \Delta t_{min}/\Delta t)$	
Пределы допускаемой относительной погрешности измерений текущего времени, %	±0,05	
Максимальное рабочее давление, МПа	1,6	
Рабочие условия эксплуатации:		
- диапазон температуры окружающего воздуха, °C	от +5 до +50	
- диапазон относительной влажности воздуха, %	от 20 до 95	
- диапазон атмосферного давление, кПа	от 61 до 106,7	
Класс защиты по ГОСТ 14254	IP54	
Средний срок службы, лет, не менее,	12	
Длина присоединительных кабелей термопреобразователей, мм (по заказу возможны другие значения)	1500	
Длина присоединительных кабелей интерфейсов, мм (по заказу возможны другие значения)	1000	

Пролоджение табл.2

Значение параметра	
3,6±0,1	
6)
от 433,075 до 434,479 (от 868,7 до 869,2)	
10 ((25)
RS485	M-Bus
9600	2400
1	1
None	Even
8	8
Соответствует	1
заводскому номеру	
4	ļ.
1	
9	.30
10	
9999,9999	
9999	9,999
10000	0,000,0
13	25
0,0	001
50	
2	4
	3,6± от 433,075 до 434,47 10 (RS485 9600 1 None 8 Соответствует заводскому номеру 1 1 99 1 99.9999 9999 10000 1: 0,6

3 СОСТАВ ИЗДЕЛИЯ

Комплект поставки теплосчетчика определяется при заказе из состава, указанного в таблице:

Наименование	Количество		
Теплосчетчик «Пульсар» Т	1		
Руководство по эксплуатации	1		
Комплект присоединителей	Согласно заказу		
Шаровой кран для термопреобразователя сопротивления	Согласно заказу		
Переходник M10 внутр. G1/2 наруж для монтажа термопреобразователя	Согласно заказу		

4 ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ

- 4.1 Идентификационное наименование ПО: «HeatMeter2 V1», номер версии ПО: 1.9.
- 4.2 Описание меню приведено в приложении-вкладыше.

При нажатии на кнопку, расположенную на передней панели, происходит циклическое переключение между режимами индикации.

Знак 🛪 означает, что крыльчатка расходомера вращается, т.е. счетчик регистрирует расход теплоносителя.

На индикаторе могут отображаться следующие виды ошибок (об ошибке сигнализирует значок Δ):

- разряжена батарея (мигает значок батареи);
- разница температур подающего и обратного термопреобразователя имеет отрицательное значение (мигают значки обоих термопреобразователей);
 - ошибка энергонезависимой памяти (мигает значок):
 - короткое замыкание термопреобразователя (вместо температуры выводится значение 999,00);
 - обрыв термопреобразователя (вместо температуры выводится значение 999,00);
 - неисправность АЦП (вместо температуры выводится значение 888,00).

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

По степени зашиты от поражения электрическим током теплосчетчик относится к классу III по ГОСТ 12.2.007.0.

ПРЕДУПРЕЖДЕНИЕ

- о При ненадлежащем обращении с литиевой батареей возникает опасность взрыва.
- о Батареи запрещается: заряжать; вскрывать; замыкать накоротко на время более 1 сек.; перепутывать полюса; нагревать свыше 100 °C; подвергать воздействию прямых солнечных лучей.
 - На батареях не должна конденсироваться влага.
- о При необходимости транспортировки следует соблюдать предписания по обращению с опасными грузами для соответствующего вида транспорта (обязательная маркировка).
 - о Использованные литиевые батареи относятся к специальному виду отходов

6 ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ, РАЗМЕЩЕНИЕ, МОНТАЖ

6.1 Подготовка изделия к установке на месте эксплуатации

Перед установкой теплосчётчика проверьте его комплектность в соответствии с паспортом. Выполните внешний осмотр с целью выявления механических повреждений корпуса прибора. Если прибор находился в условиях, отличных от условий эксплуатации, то перед вводом в эксплуатацию необходимо выдержать его в указанных условиях не менее 2 ч.

ВНИМАНИЕ! При обнаружении неисправности теплосчетчика эксплуатация прибора запрещена!

6.2 Размещение

При выборе места для установки следует руководствоваться следующими критериями: не следует устанавливать теплосчетчик в местах, где возможно присутствие пыли или агрессивных газов, располагать вблизи мощных источников электромагнитных и тепловых излучений или в местах, подверженных тряске, вибрации или воздействию воды.

При монтаже необходимо учитывать, что теплосчетчик сконфигурирован для работы в прямом или обратном трубопроводе (тип счётчика отображается на индикаторе в соответствии с меню-вкладышем).

Возможно переконфигурирование прибора до начала эксплуатации с подающего на обратный или наоборот. При этом переустановка термопреобразователя в расходомере не требуется и не допускается.

Перед установкой расходомера трубопровод необходимо промыть, чтобы удалить из него окалину, песок и другие твердые частицы. Теплосчетчик нельзя устанавливать в местах трубопроводов, где возможно скапливание воздуха.

Прямые участки трубопровода обеспечиваются использованием оригинального комплекта присоединителей.

Перед расходомерами необходимо устанавливать фильтр.

6.3 Монтаж

При монтаже расходомеров необходимо соблюдать следующие условия:

- направление стрелки на корпусе счетчика должно совпадать с направлением потока воды в трубопроводе;
- присоединительные штуцеры соединить с трубопроводом, установить прокладки между расходомером и штуцерами, затянуть накидные гайки с моментом не более 40 H·м (4 кгс·м) (для контроля момента затяжки гайки применять динамометрический ключ по ГОСТ 33530-2015);
 - установить расходомер в трубопроводе без натягов, сжатий и перекосов;
 - установить расходомер так, чтобы он был всегда заполнен водой;
 - расходомер может устанавливаться на горизонтальном, наклонном и вертикальном трубопроводе.

! После установки расходомера проведение сварочных работ на трубопроводе не допускается.

Термопреобразователь необходимо установить в подающий (при монтаже расходомера в обратку) или обратный трубопровод (при монтаже расходомера в подачу) с использованием шарового крана с отводом для термодатчика или тройника и переходника М10-G1/2. Момент затяжки штуцера термопреобразователя 1,6 H⋅м (0,16 кгс⋅м) (для контроля момента затяжки применть динамометрический ключ по ГОСТ 33530-2015).

Перед вводом расходомера в эксплуатацию проводят следующие операции:

- после монтажа расходомера воду подавать в магистраль медленно при открытых в ней воздушных клапанах для предотвращения разрушения расходомера под действием захваченного водой воздуха;
 - проверить герметичность выполненных соединений;
 - соединения должны выдерживать давление 1,6 МПа.

! Во вновь вводимую отопительную систему (дом-новостройка), после капитального ремонта или замены некоторой части труб расходомер можно устанавливать только после пуска системы в эксплуатацию и тщательной ее промывки. На период ремонта отопительной сети расходомеры рекомендуется демонтировать и временно заменить соответствующей проставкой.

Для предотвращения попадания твердых частиц или окалины перед прямым участком до теплосчетчика необходимо устанавливать фильтр.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Для безопасной эксплуатации необходимо осуществлять техническое обслуживание, которое должно проводиться лицами, изучившими настоящее руководство по эксплуатации.

Техническое обслуживание состоит из:

- 1) периодического технического обслуживания в процессе эксплуатации;
- 2) технического обслуживания перед проведением поверки.

Периодическое обслуживание заключается в осмотре внешнего вида теплосчетчика, в снятии и сверке измерительной информации, подводке внутренних часов, в устранении причин, вызывающих ошибки в работе.

Осмотр рекомендуется проводить не реже 1 раза в 6 месяцев, при этом проверяется надежность крепления прибора на месте эксплуатации, состояние кабельных линий и сохранность пломб.

Снятие информации следует проводить с использованием персонального компьютера через интерфейс.

Обслуживание перед поверкой заключается в замене литиевой батареи.

8 ПОВЕРКА

Теплосчетчик подлежит поверке, согласно ЮТЛИ.408843.000 МП «Теплосчетчики «Пульсар». Методика поверки» с изменением № 1. Периодическая поверка проводится один раз в шесть лет.

9 ПРАВИЛА ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УТИЛИЗАЦИИ

- 9.1 Теплосчетчик в упаковке предприятия-изготовителя следует транспортировать любым видом транспорта в крытых транспортных средствах на любые расстояния. Во время транспортирования и погрузочно-разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.
 - 9.2 Предельные условия хранения и транспортирования:
 - 1) температура окружающего воздуха от минус 40 до плюс 55 °C
 - 2) относительная влажность воздуха не более 95%;
 - 3) атмосферное давление не менее 61кПа (457 мм рт. ст.).
- 9.3 Хранение приборов в упаковке на складах изготовителя и потребителя должно соответствовать условиям хранения «5» по ГОСТ 15150.
- 9.4 Утилизация прибора производится в соответствии с методикой, утвержденной Государственным комитетом РФ по телекоммуникациям.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 10.1 Изготовитель гарантирует соответствие изделия требованиям ТУ 4213-041-44883489-2016 при использовании по назначению, соблюдении потребителем условий эксплуатации, хранения, транспортирования и монтажа.
 - 10.2 Гарантийный срок на прибор 5 лет при соблюдении условий п. 10.1.
- 10.3 Изготовитель не принимает рекламации, если теплосчетчики вышли из строя по вине потребителя из-за неправильной эксплуатации или при несоблюдении указаний, приведенных в настоящем Руководстве.
 - 10.4 В гарантийный ремонт принимаются теплосчетчики полностью укомплектованные и с настоящим Руководством.

По всем вопросам, связанным с качеством продукции, следует обращаться на предприятие-изготовитель:

Россия, 390027, г. Рязань, ул. Новая, 51В, литера Ж, неж.пом.Н2 Т./ф. (4912) 24-02-70 e-mail: info@pulsarm.ru http://www.pulsarm.ru